首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   593篇
  免费   14篇
  国内免费   7篇
安全科学   18篇
废物处理   51篇
环保管理   76篇
综合类   48篇
基础理论   149篇
环境理论   1篇
污染及防治   201篇
评价与监测   42篇
社会与环境   11篇
灾害及防治   17篇
  2022年   8篇
  2021年   9篇
  2020年   4篇
  2019年   9篇
  2018年   12篇
  2017年   15篇
  2016年   15篇
  2015年   13篇
  2014年   20篇
  2013年   50篇
  2012年   33篇
  2011年   28篇
  2010年   23篇
  2009年   34篇
  2008年   34篇
  2007年   43篇
  2006年   28篇
  2005年   21篇
  2004年   23篇
  2003年   23篇
  2002年   15篇
  2001年   14篇
  2000年   9篇
  1999年   11篇
  1998年   7篇
  1997年   3篇
  1996年   6篇
  1995年   4篇
  1994年   6篇
  1993年   6篇
  1992年   3篇
  1991年   5篇
  1990年   4篇
  1989年   6篇
  1988年   6篇
  1987年   7篇
  1986年   5篇
  1985年   3篇
  1984年   3篇
  1983年   5篇
  1981年   2篇
  1979年   7篇
  1978年   4篇
  1977年   4篇
  1974年   2篇
  1973年   2篇
  1972年   3篇
  1971年   3篇
  1970年   4篇
  1967年   3篇
排序方式: 共有614条查询结果,搜索用时 734 毫秒
11.
Endocrine-disrupting compounds (EDCs) are becoming of increasing concern in waterways of the USA and worldwide. What remains poorly understood, however, is how prevalent these emerging contaminants are in the environment and what methods are best able to determine landscape sources of EDCs. We describe the development of a spatially structured sampling design and a reconnaissance survey of estrogenic activity along gradients of land use within sub-watersheds. We present this example as a useful approach for state and federal agencies with an interest in identifying locations potentially impacted by EDCs that warrant more intensive, focused research. Our study confirms the importance of agricultural activities on levels of a measured estrogenic equivalent (E2Eq) and also highlights the importance of other potential sources of E2Eq in areas where intensive agriculture is not the dominant land use. Through application of readily available geographic information system (GIS) data, coupled with spatial statistical analysis, we demonstrate the correlation of specific land use types to levels of estrogenic activity across a large area in a consistent and unbiased manner.  相似文献   
12.
Carbonaceous components (organic carbon [OC] and elemental carbon [EC]) and optical properties (light absorption and scattering) of fine particulate matter (aerodynamic diameter <2.5 μm; PM2.5) were simultaneously measured at an urban site in Gwangju, Korea, during the winter of 2011. OC was further classified into OC1, OC2, OC3, and OC4, based on a temperature protocol using a Sunset OC/EC analyzer. The average OC and EC concentrations were 5.0 ± 2.5 and 1.7 ± 0.9 μg C m?3, respectively. The average single-scattering albedo (SSA) at a wavelength of 550 nm was 0.58 ± 0.11, suggesting that the aerosols observed in the winter of 2011 had a local warming effect in this area. During the whole sampling period, “stagnant PM” and “long-range transport PM” events were identified. The light absorption coefficient (babs) was higher during the stagnant PM event than during the long-range transport PM event due to the existence of abundant light-absorbing OC during the stagnant PM event. In particular, the OC2 and OC3 concentrations were higher during the stagnant PM event than those during the long-range transport event, suggesting that OC2 and OC3 might be more related to the light-absorbing OC. The light scattering coefficient (bscat) was similar between the events. On average, the mass absorption efficiency attributed to EC (σEC) was 9.6 m2 g?1, whereas the efficiency attributed to OC (σOC) was 1.8 m2 g?1 at λ = 550 nm. Furthermore, the σEC is comparable among the PM event days, but the σOC for the stagnant PM event was significantly higher than that for the long-range transport PM event (1.7 vs. 0.5).

Implications: Optical and thermal properties of carbonaceous aerosol were measured at Gwangju, and carbonaceous aerosol concentration and optical property varied between “stagnant PM” and “long-range transport PM” events. More abundant light absorbing OC was observed during the stagnant PM event.  相似文献   
13.
The filamentous alga Hydrodictyon reticulatum harvested from a bench-scale wastewater treatment pond was used to evaluate biogas production after ultrasound pretreatment. The effects of ultrasound pretreatment at a range of 10–5000 J/mL were tested with harvested H. reticulatum. Cell disruption by ultrasound was successful and showed a higher degree of disintegration at a higher applied energy. The range of 10–5000 J/mL ultrasound was able to disintegrated H. reticulatum and the soluble COD was increased from 250 mg/L to 1000 mg/L at 2500 J/mL. The disintegrated algal biomass was digested for biogas production in batch experiments. Both cumulative gas generation and volatile solids reduction data were obtained during the digestion. Cell disintegration due to ultrasound pretreatment increased the specific biogas production and degradation rates. Using the ultrasound approach, the specific methane production at a dose of 40 J/mL increased up to 384 mL/g-VS fed that was 2.3 times higher than the untreated sample. For disintegrated samples, the volatile solids reduction was greater with increased energy input, and the degradation increased slightly to 67% at a dose of 50 J/mL. The results also indicate that disintegration of the algal cells is the essential step for efficient anaerobic digestion of algal biomass.  相似文献   
14.
The present investigation dealt with the flow behavior and processability of polylactic acid/polystyrene (PLA/PS) polymer blends using a capillary rheometer. For this purpose, PLA/PS blends with different ratios of the concentrations were prepared using a single screw extruder. The shear viscosity, shear stress, shear rate, power-law index, viscous activation energy at a constant shear stress, and elongational stress were determined. PLA/PS blends exhibited a typical shear-thinning behavior over the entire range of shear rates tested, and the viscosity values of the blends would tend to decrease with increasing amount of PLA. In addition, the polymer blend of 70 % PLA and 30 % PS was found to be relatively less sensitive to the processing temperature, implying that the extrusion process was more desirable for fabrication of PLA/PS polymer blend than the injection process.  相似文献   
15.
Shared, trusted, timely data are essential elements for the cooperation needed to optimize economic, ecologic, and public safety concerns related to water. The Open Water Data Initiative (OWDI) will provide a fully scalable platform that can support a wide variety of data from many diverse providers. Many of these will be larger, well‐established, and trusted agencies with a history of providing well‐documented, standardized, and archive‐ready products. However, some potential partners may be smaller, distributed, and relatively unknown or untested as data providers. The data these partners will provide are valuable and can be used to fill in many data gaps, but can also be variable in quality or supplied in nonstandardized formats. They may also reflect the smaller partners' variable budgets and missions, be intermittent, or of unknown provenance. A challenge for the OWDI will be to convey the quality and the contextual “fitness” of data from providers other than the most trusted brands. This article reviews past and current methods for documenting data quality. Three case studies are provided that describe processes and pathways for effective data‐sharing and publication initiatives. They also illustrate how partners may work together to find a metadata reporting threshold that encourages participation while maintaining high data integrity. And lastly, potential governance is proposed that may assist smaller partners with short‐ and long‐term participation in the OWDI.  相似文献   
16.
A bias in clear-sky conditions that will be involved in estimating particulate matter(PM)concentration from aerosol optical depth(AOD) was examined using PM_(10) from two Aerosol Robotic Network sites in Korea. The study periods were between 2004 and 2007 at Anmyon and between 2003 and 2011 at Gosan, when both PM_(10) and AOD were available. Mean PM_(10) when AOD was available(PM AOD) was higher than that from all PM_(10)data(PM all) by 5.1 and9.9 μg/m~3 at Anmyon and Gosan, which accounted for 11% and 26% of PM all, respectively.Because of a difference between mean PM_(10) under daytime clear-sky conditions(PM clear)and PM AOD, the variations in ΔPM_(10), the difference of PM all from PM clear rather than from PM AOD, were investigated. Although monthly variations in ΔPM_(10)at the two sites were different, they were positively correlated to those in ΔT, similarly defined as ΔPM_(10)except for temperature, at both sites. ΔPM_(10)at Anmyon decreased to a negative value in January due to an influence of the Siberian continental high-pressure system while ΔPM_(10)at Gosan was high in winter due to an effect of photochemical production at higher temperatures than at Anmyon.  相似文献   
17.
A novel method is developed to capture and analyze several experimental flow regimes through a gross pollutant trap (GPT) with fully and partially blocked screens. Typical flow conditions and screen blockages are based on findings from field investigations that show a high content of organic matter in urban areas. Fluid motion of neutral buoyant particles is tracked using a high-speed camera and particle image velocimetry (PIV) software. The recorded fluid motion is visualized through an image-based, line integral convolution (LIC) algorithm, generally suitable for large computational fluid dynamics (CFD) datasets. The LIC method, a dense representation of streamlines, is found to be superior to the point-based flow visualization (e.g., hedgehog or arrow plots) in highlighting main flow features that are important for understanding litter capture and retention in the GPT. Detailed comparisons are made between the flow regimes, and the results are compared with CFD data previously obtained for fully blocked screens. The LIC technique is a useful tool for identifying flow structures in the GPT and areas that are subjected to abnormalities difficult to detect by conventional methods. The novel method is found to be useful both in the laboratory and in the field, with little preparation and cost. The enhancements and pitfalls of the LIC technique along with the experimentally captured flow field are presented and discussed.  相似文献   
18.
In situ chemical oxidation (ISCO) using permanganate (MnO(4)(-)) can be a very effective technique for remediation of soil and groundwater contaminated with chlorinated solvents. However, many ISCO projects are less effective than desired because of poor delivery of the chemical reagents to the treatment zone. In this work, the numerical model RT3D was modified and applied to evaluate the effect of aquifer characteristics and injection system design on contact and treatment efficiency. MnO(4)(-) consumption was simulated assuming the natural oxidant demand (NOD) is composed of a fraction that reacts instantaneously and a fraction that slowly reacts following a 2nd order relationship where NOD consumption rate increases with increasing MnO(4)(-) concentration. MnO(4)(-) consumption by the contaminant was simulated as an instantaneous reaction. Simulation results indicate that the mass of permanganate and volume of water injected has the greatest impact on aquifer contact efficiency and contaminant treatment efficiency. Several small injection events are not expected to increase contact efficiency compared to a single large injection event, and can increase the amount of un-reacted MnO(4)(-) released down-gradient. High groundwater flow velocities can increase the fraction of aquifer contacted. Initial contaminant concentration and contaminant retardation factor have only a minor impact on volume contact efficiency. Aquifer heterogeneity can have both positive and negative impacts on remediation system performance, depending on the injection system design.  相似文献   
19.
Abstract: We proposed a step‐by‐step approach to quantify the sensitivity of ground‐water discharge by evapotranspiration (ET) to three categories of independent input variables. To illustrate the approach, we adopt a basic ground‐water discharge estimation model, in which the volume of ground water lost to ET was computed as the product of the ground‐water discharge rate and the associated area. The ground‐water discharge rate was assumed to equal the ET rate minus local precipitation. The objective of this study is to outline a step‐by‐step procedure to quantify the contributions from individual independent variable uncertainties to the uncertainty of total ground‐water discharge estimates; the independent variables include ET rates of individual ET units, areas associated with the ET units, and precipitation in each subbasin. The specific goal is to guide future characterization efforts by better targeting data collection for those variables most responsible for uncertainty in ground‐water discharge estimates. The influential independent variables to be included in the sensitivity analysis are first selected based on the physical characteristics and model structure. Both regression coefficients and standardized regression coefficients for the selected independent variables are calculated using the results from sampling‐based Monte Carlo simulations. Results illustrate that, while as many as 630 independent variables potentially contribute to the calculation of the total annual ground‐water discharge for the case study area, a selection of seven independent variables could be used to develop an accurate regression model, accounting for more than 96% of the total variance in ground‐water discharge. Results indicate that the variability of ET rate for moderately dense desert shrubland contributes to about 75% of the variance in the total ground‐water discharge estimates. These results point to a need to better quantify ET rates for moderately dense shrubland to reduce overall uncertainty in estimates of ground‐water discharge. While the approach proposed here uses a basic ground‐water discharge model taken from an earlier study, the procedure of quantifying uncertainty and sensitivity can be generalized to handle other types of environmental models involving large numbers of independent variables.  相似文献   
20.
An existing model of radiocaesium transfer to grasses was extended to include wheat and barley and parameterised using data from a wide range of soils and contact times. The model structure was revised and evaluated using a subset of the available data which was not used for model parameterisation. The resulting model was then used as a basis for systematic model reduction to test the utility of the model components. This analysis suggested that the use of 4 model variables (relating to radiocaesium adsorption on organic matter and the pH sensitivity of soil solution potassium concentration) and 1 model input (pH) are not required. The results of this analysis were used to develop a reduced model which was further evaluated in terms of comparisons to observations. The reduced model had an improved empirical performance and fewer adjustable parameters and soil characteristic inputs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号